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1.0: Introduction 

 
The DLFM package is a set of libraries and tools that can be applied to a dynamically-linked application, 
or an application that uses Python, to provide improved performance during the loading of dynamic 
libraries and importing of Python modules when running the application at large scale.  Included in the 
DLFM package are: a set of wrapper functions that interface with the dynamic linker (ld.so) to cache the 
application's dynamic library load operations; and a custom libpython.so, with a set of optimized 
components, that caches the application's Python import operations. 

2.0: Dynamic Linking and Python Importing Without DLFM 
 

When a dynamically-linked application is executed, the set of dependent libraries is loaded in sequence 
by ld.so prior to the transfer of control to the application's main function.  This set of dependent libraries 
ordinarily numbers a dozen or so, but can number many more, depending on the needs of the application; 
their names and paths are given by the ldd(1) command.  As ld.so processes each dependent library, it 
executes a series of system calls to find the library and make the library's contents available to the 
application.  These include: 

        fd = open (/path/to/dependent/library, O_RDONLY); 
        read (fd, elfhdr, 832); // to get the library ELF header 
        fstat (fd, &stbuf); // to get library attributes, such as size 
        mmap (buf, length, prot, MAP_PRIVATE, fd, offset); // read text segment 

        mmap (buf, length, prot, MAP_PRIVATE, fd, offset); // read data segment 
        close (fd); 

The number of open() calls can be many times larger than the number of dependent libraries, because 
ld.so must search for each dependent library in multiple locations, as described on the ld.so(1) man 
page. 

When the application runs at very large width (that is, at high PE count or large MPI comm size), then the 
dynamic library load sequence often directs every PE (or MPI rank) to execute the same set of system 
calls on the same file system object at more or less the same time.  This can cause serious file system 
contention and performance degradation. 

When a Python application is executed, the set of imported Python modules is loaded in the sequence 
specified by the order of import statements that are executed by the Python main function and any 
subordinate functions.  As Python processes each imported module, it executes a series of system calls 
to find the module and make the module's contents available to the application.  For an extension module 
(as described in http://docs.python.org/2.7/extending/extending.html,Section 3, "Extending Python With C 
or C++"), these calls are as shown above for the case of a dynamic library; for a standard Python module, 
these calls include: 

        fd = open (/path/to/module, O_RDONLY); 
        fstat (fd, &stbuf); // to get module attributes, such as size 



        read (fd, buf, size); // to get the module contents 
        close (fd); 

The number of open() calls can be many times larger than the number of import operations, because 
Python must search for each module file in multiple locations, as described in 
http://docs.python.org/tutorial/modules.html, Section 6.1.2, "The Module Search Path".  In addition, the 
specified module might actually refer to a package of modules, stored in the file system as a directory 
with a special __init__ module and other subordinate modules; Python uses a series of additional 
stat() calls to establish whether or not a module is actually a package. 

When the application runs at very large width (that is, at high PE count or large MPI comm size), then the 
import sequence often directs every PE (or MPI rank) to execute the same set of system calls on the 
same file system object at more or less the same time.  This can cause serious file system contention and 
performance degradation. 

This document will refer to dependent libraries, Python extension modules and Python standard modules 
collectively as "objects." 

3.0: DLFM Theory of Operation 
 

The successful use of DLFM depends on three central assumptions: (1) the application can be executed 
at either small or large width; (2) the number of objects to be loaded/imported, and their order, do not 
change from small-width to large-width runs; and (3) the number of objects to be loaded/imported, and 
their order, are identical across PEs.  The reasons for these central assumptions will be given in the next 
section. 

DLFM uses a rudimentary communication package, based on sockets, to facilitate the distribution of 
cached data to the PEs.  This choice was made because of the timing issues involved.  The loading of 
dependent libraries by ld.so occurs very early in the application's execution; thus, there is limited I/O, 
communication, and other system-related support available to the application at that time.  Specifically, 
there is no opportunity at this stage to employ higher-level operations such as MPI. 

4.0: Dynamic Linking and Python Importing With DLFM 
 

DLFM eases file-system contention and delivers improved performance during the loading of dynamic 
libraries and the importing of Python modules by caching the contents of such objects in files on the 
parallel file system.  In the case of dynamic libraries, the cache file is dlcache.dat, and the strategy is 
called DLCaching.  In the case of Python modules, the cache file is fmcache.dat, and the strategy is 
called FMCaching. DLFM can be used to perform DLCaching alone, or DLCaching and FMCaching 
together. 

In an application built with DLFM, the cache files are read into memory very early in application startup 
(on the occasion of the first open(2) call), and all subsequent library-load or module-import operations 
are serviced out of the in-memory cache buffers. 

In DLCaching, the system calls normally made by ld.so to find and load a dependent library are 
intercepted and redirected to the wrapper layer, which then accesses the cache to make the dependent 
library's contents available to the application.  The sequence of operations becomes: 

        memcpy (elf_hdr, dl_ptr, 832); // to get the library ELF header 
        memcpy (&stbuf, dl_ptr, sizeof (stbuf)); // to get library attributes 
        mmap (buf, length, prot, MAP_PRIVATE | MAP_ANONYMOUS); 
        memcpy (buf, dl_ptr, length); // read text segment 
        mmap (buf, length, prot, MAP_PRIVATE | MAP_ANONYMOUS); 
        memcpy (buf, dl_ptr, length); // read data segment 



 

In FMCaching, the functions within libpython.so responsible for finding and loading a Python module are 
modified to access the cache to make the module's contents available to the application.  For a Python 
extension module, the sequence of operations becomes the same as that shown above for dependent 
libraries.  For a Python standard module, the sequence of operations becomes: 

        memcpy (&stbuf, fm_ptr, sizeof (stbuf)); // to get library attributes 
        memcpy (buf, fm_ptr, size); // to get the module contents 

Note that in both cases, all file-related system calls (open, stat, read, close) have been 
eliminated.  In both cases, the in-memory cache is freed once it has been entirely read. 

Using DLFM in an application involves four steps.  The first two steps are performed when the application 
is built, and the last two steps are performed when the application is executed. 

        Step 1: Specifying a Custom Dynamic Linker and Python Library 
 

The procedure for performing the custom link is as follows.  Suppose that the normal command for linking 
the application (called myapp) looks like this: 

                cc main.o solve.o report.o \ 
                        -L/usr/lib64 -lpython2.6 \ 
                        -L${HOME}/lib -lmytools -o myapp 

To accomplish the custom link, one would instead perform the following command: 

                cc main.o solve.o report.o \ 
                        ${DLFM_INSTALL_DIR}/lib/*.o \ 
                        -L${DLFM_INSTALL_DIR}/lib -lpython2.7 \ 
                        -L${HOME}/lib -lmytools -o myapp \ 
                        -Wl,--dynamic-linker=`pwd`/ld.so 

The second line of the new cc command specifies that the object files that make up the wrapper layer be 
statically linked into the executable.  The third line is a modification of the original cc command's second 
line; it specifies that the custom Python library be dynamically linked to the executable.  The fifth line 
specifies that a custom ld.so be used as the dynamic linker. 

Note that, at this point, the custom ld.so does not yet exist.  The next step describes the procedure for 
creating it. 

        Step 2: Customizing the dynamic linker 
 

Customizing the dynamic linker involves patching some code in ld.so so that, instead of issuing the set 
of system calls to load a dependent library, the linker calls the corresponding wrapper functions that are 
now part of the application code.  The tool that performs this patching is called dlpatch.   dlpatch is 
part of the DLFM package.  The command to customize the dynamic linker is: 

        ${DLFM_INSTALL_DIR}/bin/dlpatch myapp 

The dlpatch command creates a copy of ld.so in the current working directory, locates the addresses 
of the wrappper functions in the executable myapp, and patches instructions into the ld.so that cause it 
to branch to the appropriate addresses in myapp instead of executing the system calls. 



Once the dlpatch command has been executed, the ldd(1) command can be used to verify that the 
executable myapp will use the custom ld.so rather than the system default ld.so. 

        Step 3: Creating the DLFM cache files 
 

Before the application can make use of the DLFM cache files, it must first generate the files.  This is done 
by executing the application in a "pilot" mode.  Suppose that the job script to execute the application at a 
small width is as follows (the line numbers at the left are for annotation only; they do not appear in the 
actual script file): 

1       #!/bin/bash 
2       #PBS -S /bin/bash 
3       #PBS -l mppwidth=24 
4       #PBS -l mppnppn=24 
5       #PBS -l walltime=1:00:00 
6       #PBS -o run.out 
7       #PBS -j oe 
8       # 
9       test "${PBS_O_WORKDIR}" != "" && cd ${PBS_O_WORKDIR} 
10      aprun -n 24 -N 24 myapp 
11      # 
12      # All done 
13      # 

The changes necessary to create the DLFM cache files appear in the modified script below: 

1       #!/bin/bash 
2       #PBS -S /bin/bash 
3       #PBS -l mppwidth=24 
4       #PBS -l mppnppn=24 
5       #PBS -l walltime=1:00:00 
6       #PBS -v DLFM_INSTALL_DIR 
7       #PBS -o run.out 
8       #PBS -j oe 
9       # 
10      test "${PBS_O_WORKDIR}" != "" && cd ${PBS_O_WORKDIR} 
11      export DLFM_OP=write-cache 
12      ${DLFM_INSTALL_DIR}/bin/dlfm.pre ${DLFM_OP} 
13      export PYTHONHOME=${DLFM_INSTALL_DIR} 
14      aprun -n 24 -N 24 myapp 
15      # 
16      # All done 
17      # 

The modified script has four new lines.  Line 6 exports the environment variable DLFM_INSTALL_DIR 
from the shell that submits the job to the shell that runs the job script.  Line 11 sets the type of DLFM 
caching operation to perform (write-cache).  Line 12 executes the dlfm.pre command to prepare the 
runtime environment for writing the cache files.  This preparation includes creating the cache files with 
permissions specific for a write-cache run.  Line 13 sets the PYTHONHOME environment variable to point 
to the path where the modules associated with the custom python reside.  On line 14 of the modified 
script, as on line 10 of the original script, the application is executed at a width of 24 PEs, across the 24 
cores of a single compute node.  It is assumed that myapp has been built to do DLFM caching, as 
described in steps 1-2 above; as such, it will generate the cache files in the current working directory of 
the job script as it runs. 



        Step 4: Reading the DLFM cache files 
 

Now that the application has been run at small width to create the DLFM cache files, a large-width run 
can be made to read these files.  Suppose that the job script to execute the application at a large width is 
as follows (the line numbers at the left are for annotation only; they do not appear in the actual script file): 

1       #!/bin/bash 
2       #PBS -S /bin/bash 
3       #PBS -l mppwidth=24000 
4       #PBS -l mppnppn=24 
5       #PBS -l walltime=1:00:00 
6       #PBS -o run.out 
7       #PBS -j oe 
8       # 
9       test "${PBS_O_WORKDIR}" != "" && cd ${PBS_O_WORKDIR} 
10      aprun -n 24000 -N 24 myapp 
11      # 
12      # All done 
13      # 

The changes necessary to read the DLFM cache files appear in the modified script below: 

1       #!/bin/bash 
2       #PBS -S /bin/bash 
3       #PBS -l mppwidth=24000 
4       #PBS -l mppnppn=24 
5       #PBS -l walltime=1:00:00 
6       #PBS -v DLFM_INSTALL_DIR 
7       #PBS -o run.out 
8       #PBS -j oe 
9       # 
10      test "${PBS_O_WORKDIR}" != "" && cd ${PBS_O_WORKDIR} 
11      export DLFM_OP=read-cache 
12      ${DLFM_INSTALL_DIR}/bin/dlfm.pre ${DLFM_OP} 24000 
13      export PYTHONHOME=${DLFM_INSTALL_DIR} 
14      aprun -n 24000 -N 24 myapp 
15      # 
16      # All done 
17      # 

The modified script has four new lines.  Line 6 exports the environment variable DLFM_INSTALL_DIR 
from the shell that submits the job to the shell that runs the job script.  Line 11 sets the type of DLFM 
caching operation to perform (read-cache).  Line 12 executes the dlfm.pre command to prepare the 
runtime environment to read the cache files.  The command also takes a numeric argument that specifies 
the width used in the run.  The preparation done by dlfm.pre includes modifying the cache files with 
permissions specific for a read-cache run, and striping the files to optimize the process of presenting the 
cache files to all of the PEs of the large-width run.  Line 13 sets the PYTHONHOME environment variable 
to point to the path where the modules associated with the custom python reside.  On line 13 of the 
modified script, as on line 10 of the original script, the application is executed at a width of 24000 PEs, 
across the 24 cores of 1000 compute nodes.  It is assumed that myapp has been built to do DLFM 
caching, as described in steps 1-2 above; as such, it will read the cache files in the current working 
directory of the batch job as it runs. 

  



5.0: Using the DLCaching Debugging Feature 
 

The DLFM package is equipped to write debug trace files during DLCaching when specified by the user.  
The writing of trace files is controlled by the environment variable DLCACHE_DBG.  When this variable is 
set to "on", "true", "yes", or "1", the dlfm.pre command will generate empty trace files, in a subdirectory 
called dlcache.dbg within the current working directory, for each node and core in the job's reservation.  
The application will then sense the presence of the trace files and will write traces to these files as it 
performs its dlcached operations.  The trace file names will be of the form: 

        dlcache.dbg.<nodename>.<coreid> 

where nodename is the name of the node (as given by uname(2)) that hosted the application PE, and 
coreid is an alphabetic character representing the processor core that hosted the PE (a-z for cores 0-25, 
A-Z for 26-51). 


